Use of tabulated cumulative density functions to generate pseudorandom numbers obeying specific distributions for Monte Carlo simulations Jaap R. Zijp and Jaap J. ten Bosch A new method for the generation of pseudorandom numbers, which obey a specific statistical distribution, is presented. As an example the generation of the scattering angle $\boldsymbol{\theta}$ for Monte Carlo light-scattering simulations is shown, using real, peaked, scattering phase functions. When the theory or the geometry of a physical experiment is too tedious, computer simulations may be performed to understand the process. These simulations need pseudorandom numbers that obey a specific probability density function PDF(x). If the PDF is simple and analytically invertible, the inverse distribution method may be used. In other cases the well-known rejection technique is mostly used, but this technique is inefficient when the PDF is sharply peaked. Both techniques are clearly explained by Lux and Koblinger.¹ Recently, Walker² described how a sharply peaked PDF can be dealt with by using a mesh of x points with an x-dependent density, which is obtained with an adaptive quadrature method. In this Note we propose to deal with a sharply peaked PDF(x) by using a tabulated density function. Let x be a variable between x_1 and x_2 . The cumulative PDF (CPDF) can be calculated with $$CPDF(x) = \int_{x_1}^{x} PDF(x')dx'$$ (1) and normalized so that $CPDF(x_2) = 1$; CPDF is stored in an array. The inverted CPDF (ICPDF) can be calculated and stored in the array ICPDF[k] as follows. For all k the two values of CPDF(x) that most closely correspond to the index value k are looked up in the array CPDF, and an appropriate interpolation technique has to be performed. From a random number RND the corresponding index of the array ICPDF can be calculated, and the pseudorandom value of x is given by the value of the corresponding element of the array ICPDF[k]. Fig. 1. Probability density function (PDF) of θ obeying the Mie phase function (size parameter x = 3.1, relative refractive index m = 1.050, anisotropy factor g = 0.8). The authors are with the Laboratory for Materia Technica, Faculty of Medicine, State University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. Received 11 January 1993; revised manuscript received 23 ^{0003-6935/94/030533-02\$06.00/0.} c 1994 Optical Society of America Fig. 2. Distribution of 1,000,000 generated values of θ . The fluctuations in the frequency $f(\theta)$ are equal to the expected statistical poise As an example we show generation of pseudorandom angles θ in a Monte Carlo calculation, simulating a light-scattering process. We use a tabulated real scattering phase function, one of a sphere calculated by Mie theory, as clearly explained by van de Hulst³; the function is available with a resolution of 0.25° and is stored in an array with 720 elements. The CPDF(θ) is calculated and inverted by performing Lagrange interpolations to give an ICPDF array having 1000 elements. We stored the values of $\cos(\theta)$ in the Table 1. Average Time Needed to Generate a Value of cos(e) (in Microseconds)* | Phase Function | Analytical
Inverted
Function | Rejection
Technique | Presented
Method | |--------------------------------------|------------------------------------|------------------------|---------------------| | Isotrope | 11 | 70 | 41 | | Henyey–Greenstein $(g = 0.8)$ | 30 | 186 | 41 | | Mie $(x = 3.1, m = 1.050, g = 0.8)$ | | 143 | 41 | | Mie $(x = 11.2, m = 1.500, g = 0.8)$ | . — | 307 | 41 | ^aAll problems were programmed in Turbo Pascal and executed on an 80486/33 MHz personal computer. ICPDF array. The $\cos(\theta)$ can be generated from a linear interpolation between the array elements whose index is given by the rounded value of (1000RND) and (1000RND)+1. The averaged times needed to generate a value of $\cos(\theta)$ are shown in Table 1. The time needed to generate a value of $\cos(\theta)$ by the presented method is a fraction longer than the time needed by the analytical inverted Henyey–Greenstein phase function. This difference is reducing if θ is generated instead of $\cos(\theta)$. Figures 1 and 2 show the theoretical and the generated distribution functions of θ , respectively. We conclude that the presented method is an accurate and fast method for the generation of pseudorandom numbers that have to obey a known statistical distribution. ## References - I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, Boca Raton, Fla., 1991), Chap. 2, p. 9. - P. L. Walker, "Modification of Monte Carlo codes for use with sharply peaked phase functions," Appl. Opt. 32, 2730-2733 (1993). - H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 9, p. 114.